Module guide
Angewandte Künstliche Intelligenz (AKI)
Machine Learning 2
Empfohlene Vorkenntnisse |
Machine Learning 1 |
||||||||||||||||||||
Lehrform | Vorlesung/Labor | ||||||||||||||||||||
Lernziele / Kompetenzen |
Die Studierenden kennen weiterführende Methoden des Machine Learning und haben ein vertieftes Verständnis für die Methoden aus Machine Learning 1. Die Studierenden können unüberwachte Lernverfahren |
||||||||||||||||||||
Dauer | 1 | ||||||||||||||||||||
SWS | 4.0 | ||||||||||||||||||||
Aufwand |
|
||||||||||||||||||||
ECTS | 5.0 | ||||||||||||||||||||
Voraussetzungen für die Vergabe von LP |
Modulprüfung für "Machine Learning 2" (K90) "Praktikum Machine Learning 2" muss "m.E." attestiert sein. |
||||||||||||||||||||
Modulverantwortlicher |
Prof. Dr. Stephan Trahasch |
||||||||||||||||||||
Max. Teilnehmer | 41 | ||||||||||||||||||||
Empf. Semester | 3 | ||||||||||||||||||||
Haeufigkeit | jedes Jahr (WS) | ||||||||||||||||||||
Verwendbarkeit |
Bachelor-Studiengang AKI |
||||||||||||||||||||
Veranstaltungen |
Machine Learning 2
Praktikum Machine Learning 2
|